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1 Reward details

The desired hybrid whole-body locomotion behavior contains the following as-
pects:

– tracking the target command as rcmd

– smooth joints command as ra

– low energy consumption as re

– foot being parallel to ze ground during contact as rζf

– low frequency in the contact switch as rc

– low contact velocity in the tangent plane as rcv

– minor oscillation of the robot body as rω

The target command reward is defined as the following:

rcmd = kcmd ∗ e−kecmd
||δscmd||2 (1)

where scmd denotes the difference with the desired command.
The smooth motion is expected to minimize the differentiation of joints angle

commands as the following:

ra = ka ∗ ||θd − θdprev
|| (2)

where θdprev denotes the joints angle command at the previous time point.
The energy consumption is represented by the joints power as follows:

re = ke ∗ ||θT
τ · θ̇|| (3)

where θτ denotes the joints torque vector.
Foot orientation during contact is represented as follows:

rζf = kζf ∗ e−keζf
||ζf ||2

(4)

where ζf denotes the foot orientation angle with respect to the ground.
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To avoid high-frequency contact switch (which is impossible for real robots),
the contact switch is punished as the following:

rc = kfc ∗ ||fc − fcprev || (5)

where fc and fcprev denote the feet binary contact state at the current and
previous time point.

Foot tangent velocity during contact could avoid the unexpected slip. The
reward is as follows:

rcv = kcv ∗ (||vtan
fl

||+ ||vtan
fr

||) (6)

where vtan
fl

and vtan
fr

denote the foot velocity in the tangent plane.
To reduce the oscillation in robot body, the angular velocity is to be mini-

mized as follows:
rω = kω ∗ ||ω|| (7)

where ω denotes the torso’s angular velocity.
In locomotion task, to avoid the feet dragging behavior, the foot clearance is

encouraged as the following:

rfd =
∑

i∈{l,r}(kfd ∗ e−kefd
||fdi−hd||2) (8)

where fd and hd denote the foot distance in z axis and the desired foot height.
To gradually reduce the assistive force, the assistance reward is represented

as follows:
rT = kT ∗ (||FT [0:3]||+ ||FT [3:6]||) (9)

where FT [0:3],FT [3:6] denote the two sets of assistance force individually.
Here, kcmd, ka, ke, kζf , kfc , kcv , kω, kfd , kT denote the weight of each reward

term.

2 Sim-to-real transfer

Simulation calibration

We operate the robot with a previously developed model-based controller [3]
and record the joints position data during walking. The next step is to conduct
the same controller in the simulation. By sampling the parameter space, we
record the total difference in joints position. The parameter set with minimal
joints position difference is selected as the suitable parameters for the simulation.
The simulation calibration procedure could be summarized as the following:

θ∗sim = arg min
θsim

[ tf∑
t=0

||qsim(t)− qr(t)||

]
(10)

where θsim denotes the parameters to estimate for the simulation, qsim(t) and
qr(t) denote the joints position in the simulation and real robot.
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Fig. 1. System overview of the simulation and real robot.

Noises addition To simulate the noisy input of the real robot, we add the
additional noises to the joints position and IMU data.

– Joint position in observation with additive noise ∼ N (3.0) deg

– Euler angle in observation with additive noise ∼ N (3.0) deg

– Angular velocity in observation with additive noise ∼ N (5.0) deg

– Initial configuration with additive noise ∼ N (4.0) deg

Disturbance injection Applying external disturbance to the robot is another
method to robustify the learned controller. During the learning process, the
humanoid robot is applied with the random-direction disturbance force on its
center of gravity, left hand, and right hand. The magnitude of external force is
15% of the weight with 1.0-second gap time in average.

3 Experiments

3.1 Locomotion

To evaluate the performance of our learned whole-body walking controller, we
compare with a model-based controller in [3]. This controller is developed based
on capture point with simplified linear inverted pendulum model (LIPM), and
successfully demonstrated on multiple humanoid robot platforms with reactive
push recovery ability against large external force.
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Fig. 2. Comparison of model-based controller and learned controller walking on rubber
socks. (a)-(c) are the failure in model-based controller because of the influence of un-
expected friction changes, (d)-(f) are the stable performance of our learned controller.

Performance under environment changes
In the first KXR experiment, the ground is randomly put with small metal
pipes, which are very easy to slide with indoor wooden ground.The model-based
controller falls down about every 3 steps, while the learned controller is very
robust to the sliding obstacles. One of the reasons is the learned whole-body
controller has less angular momentum on the feet because of the compensation
from arms’ motion, which shows the advantage of whole-body controller as well.

In the second KXR experiment, we put the baby socks on the feet of the
robot, which has the high-friction-coefficients design with rubber dots to increase
friction force. The model-based controller failed to walk because of the friction
coefficients being different with its pre-tuned value. In contrast, our learned
controller shows robustness against the unknown changes as Fig. 2.

Performance comparing with previous model-based controller
In the simulation, we evaluate the performance of both controller on the JAXON
humanoid robot. The first experiment is to evaluate the consumed torque during
locomotion. The robot is commanded with the same walking speed (0.2m/s) in
baseline controller and our learned controller. The plot of joints torque is as
Fig. 3, in which the averaged normalization values of joints torque are as the
following:

Controller Averaged total torque Averaged legs torque
Model-based controller [3] 211.55Nm 207.88Nm
Our learned controller 213.00Nm 192.85Nm

Because of our learned controller generates more dynamic arm motion com-
pared to the almost static arm motion in the previous model-based controller,
the total torque is 1.7% larger. If only comparing the joints torque on the dual



Learning Bipedal Skills via Assistance 5

(a)

(b)

[Kojio et.al IROS ’19]

[Our learned controller]

Torque[Nm]

Torque[Nm]

Fig. 3. Comparison of joints torque of model-based controller and learned controller
during locomotion, in which the average walking speed is [0.2, 0, 0]m/s. (a) denotes the
model-based controller, (b) denotes our learned controller.
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Fig. 4. Comparison of push recovery from backward force in model-based controller
and learned controller during locomotion. (a) denotes the model-based controller, (b)
denotes our learned controller, (c) is the experiment visualization.
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Fig. 5. Comparison of push recovery from rightward force in model-based controller
and learned controller during locomotion. (a) denotes the model-based controller, (b)
denotes our learned controller, (c) is the experiment visualization.
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Fig. 6. Comparison of push recovery from leftward force in model-based controller
and learned controller during locomotion. (a) denotes the model-based controller, (b)
denotes our learned controller, (c) is the experiment visualization.
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Fig. 7. Learned controller based on the asymmetrical humanoid robot with a fixed left
knee motor, in which the robot successfully learns whole-body locomotion behavior
with our proposed learning framework.

legs, the learned controller requires 90.5% torque of the model-based controller.
In addition, the joints torque plot is more smooth in our learned controller as
Fig. 3.

The second experiments are to compare the robustness of both controller
under unexpected large external force. In comparison, the robot torso is applied
with 500N external force with 0.1s time as [3], in which the external force is
applied in the lateral and backward direction. When applying in the backward
direction, both controller shows reactive behavior with the adjustment of foot
landing position as Fig. 4, in which the swing foot takes a large step to recovery
from the sudden backward push.

When applying external force in the lateral direction, there are two cases,
which are the force is alongside or opposite to the support foot. For the first
case, the swing foot in both controller shows the reactive behavior by taking a
large step to recovery from the lateral force as Fig. 5. For the second case, the
model-based controller failed by attempting to extend support foot contact time
to recovery the balance, while our learned controller shows the dynamic behav-
ior with immediate contact switch to change the support foot for the recovery
motion.

Based on these comparison, our learned controller shows more robust behav-
ior against external force, even for the corner case of the previous model-based
controller.

Learning under different hardware settings
To fully verify our learning framework, we learn the locomotion behavior on
multiple humanoid robot platforms with different configuration settings. We also
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Fig. 8. Trend of assistive force during learning KXR locomotion in Stage 2.

testify our learning framework on the asymmetrical KXR robot with fixed motors
as Fig. 7. The proposed framework successfully learns the locomotion behavior
for all the tested robots.

3.2 Dynamic skills

Bipedal jumping
The joints torque plot is demonstrated in the submitted paper. Here we add
the trend plot of assistive force during learning as Fig. 9. When each assistance
is lower than 10% of the robot weight, we will switch to Stage 3 for learning
without the assistive force.
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Fig. 9. Trend of assistive force during learning Atlas bipedal jumping in Stage 2.

Rotation jumping
In addition to the plot showed in the submitted paper, we also analyze the
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joints torque distribution. The Atlas simulation we utilized in the experiment is
the open-source DRC version with 174-kg mass [1], which is almost 2 times of
the new Atlas robot. Therefore, to achieve dynamic skills requires more joints
torque compared to the new Atlas robot showed in the video [2].

For continuous rotational jumping in Fig. 10, the joints torque during the
behavior is as Fig. 11. For 360◦ rotation jumping in Fig. 12, the joints torque is
as Fig. 13.

(a) (b) (c)

Fig. 10. Learned controller on a 180◦ rotation jumping.
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Fig. 11. Joints torque of Atlas robot during continous rotation jumping.
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Fig. 12. Learned controller on a 360◦ rotation jumping.
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Fig. 13. Joints torque of Atlas robot during a 360◦ rotation jumping.
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